Defective and clustered choosability of sparse graphs
نویسندگان
چکیده
منابع مشابه
Linear choosability of sparse graphs
A linear coloring is a proper coloring such that each pair of color classes induces a union of disjoint paths. We study the linear list chromatic number, denoted lcl(G), of sparse graphs. The maximum average degree of a graph G, denoted mad(G), is the maximum of the average degrees of all subgraphs of G. It is clear that any graph Gwithmaximumdegree ∆(G) satisfies lcl(G) ≥ ⌈∆(G)/2⌉ + 1. In this...
متن کاملDefective Choosability of Graphs without Small Minors
For each proper subgraph H of K5, we determine all pairs (k, d) such that every H-minor-free graph is (k, d)-choosable or (k, d)-choosable. The main structural lemma is that the only 3-connected (K5 − e)-minor-free graphs are wheels, the triangular prism, and K3,3; this is used to prove that every (K5 − e)-minor-free graph is 4-choosable and (3, 1)-choosable.
متن کاملDefective choosability of graphs in surfaces
It is known that if G is a graph that can be drawn without edges crossing in a surface with Euler characteristic ǫ, and k and d are positive integers such that k > 3 and d is sufficiently large in terms of k and ǫ, then G is (k, d)∗-colorable; that is, the vertices of G can be colored with k colors so that each vertex has at most d neighbors with the same color as itself. In this paper, the kno...
متن کاملChoosability, Edge Choosability, and Total Choosability of Outerplane Graphs
Let χl (G), χ ′ l (G), χ ′′ l (G), and 1(G) denote, respectively, the list chromatic number, the list chromatic index, the list total chromatic number, and the maximum degree of a non-trivial connected outerplane graph G. We prove the following results. (1) 2 ≤ χl (G) ≤ 3 and χl (G) = 2 if and only if G is bipartite with at most one cycle. (2) 1(G) ≤ χ ′ l (G) ≤ 1(G) + 1 and χ ′ l (G) = 1(G) + ...
متن کاملAdaptable choosability of planar graphs with sparse short cycles
Given a (possibly improper) edge-colouring F of a graph G, a vertex colouring of G is adapted to F if no colour appears at the same time on an edge and on its two endpoints. A graph G is called adaptably k-choosable (for some positive integer k) if for any list assignment L to the vertices of G, with |L(v)| ≥ k for all v, and any edge-colouring F of G, G admits a colouring c adapted to F where ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorics, Probability and Computing
سال: 2019
ISSN: 0963-5483,1469-2163
DOI: 10.1017/s0963548319000063